Rectified 8-cube


8-cube

Rectified 8-cube

Birectified 8-cube

Trirectified 8-cube

Trirectified 8-orthoplex

Birectified 8-orthoplex

Rectified 8-orthoplex

8-orthoplex
Orthogonal projections in BC8 Coxeter plane

In eight-dimensional geometry, a rectified 8-cube is a convex uniform 8-polytope, being a rectification of the regular 8-cube.

There are unique 8 degrees of rectifications, the zeroth being the 8-cube, and the 7th and last being the 8-orthoplex. Vertices of the rectified 8-cube are located at the edge-centers of the 8-cube. Vertices of the birectified 8-cube are located in the square face centers of the 8-cube. Vertices of the trirectified 8-cube are located in the 7-cube cell centers of the 8-cube.

Contents


Rectified 8-cube

Rectified 8-cube
Type uniform 8-polytope
Schläfli symbol t1{4,3,3,3,3,3,3}
Coxeter-Dynkin diagrams
7-faces
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure 6-simplex prism
Coxeter groups C8, [36,4]
D8, [35,1,1]
Properties convex

Alternate names

Images

orthographic projections
B8 B7
[16] [14]
B6 B5
[12] [10]
B4 B3 B2
[8] [6] [4]
A7 A5 A3
[8] [6] [4]

Birectified 8-cube

Birectified 8-cube
Type uniform 8-polytope
Schläfli symbol t2{4,3,3,3,3,3,3}
Coxeter-Dynkin diagrams
7-faces
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure {3,3,3,3}x{4}
Coxeter groups C8, [36,4]
D8, [35,1,1]
Properties convex

Alternate names

Images

orthographic projections
B8 B7
[16] [14]
B6 B5
[12] [10]
B4 B3 B2
[8] [6] [4]
A7 A5 A3
[8] [6] [4]

Trirectified 8-cube

Triectified 8-cube
Type uniform 8-polytope
Schläfli symbol t3{4,3,3,3,3,3,3}
Coxeter-Dynkin diagrams
7-faces
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure {3,3,3}x{3,4}
Coxeter groups C8, [36,4]
D8, [35,1,1]
Properties convex

Alternate names

Images

orthographic projections
B8 B7
[16] [14]
B6 B5
[12] [10]
B4 B3 B2
[8] [6] [4]
A7 A5 A3
[8] [6] [4]

Notes

References

External links